Acidic pH reduces VEGF-mediated endothelial cell responses by downregulation of VEGFR-2; relevance for anti-angiogenic therapies
نویسندگان
چکیده
Anti-angiogenic treatments targeting the vascular endothelial growth factor or its receptors have shown clinical benefits. However, impact on long-term survival remains limited. Solid tumors display an acidic microenvironment that profoundly influences their biology. Consequences of acidity on endothelial cells and anti-angiogenic therapies remain poorly characterized and hence are the focus of this study. We found that exposing endothelial cells to acidic extracellular pH resulted in reduced cell proliferation and migration. Also, whereas VEGF increased endothelial cell proliferation and survival at pH 7.4, it had no effect at pH 6.4. Furthermore, in acidic conditions, stimulation of endothelial cells with VEGF did not result in activation of downstream signaling pathways such as AKT. At a molecular level, acidity significantly decreased the expression of VEGFR-2 by endothelial cells. Consequently, anti-angiogenic therapies that target VEGFR-2 such as sunitinib and sorafenib failed to block endothelial cell proliferation in acidic conditions. In vivo, neutralizing tumor acidity with sodium bicarbonate increased the percentage of endothelial cells expressing VEGFR-2 in tumor xenografts. Furthermore, combining sodium bicarbonate with sunitinib provided stronger anti-cancer activity than either treatment alone. Histological analysis showed that sunitinib had a stronger anti-angiogenic effect when combined with sodium bicarbonate. Overall, our results show that endothelial cells prosper independently of VEGF in acidic conditions partly as a consequence of decreased VEGFR-2 expression. They further suggest that strategies aiming to raise intratumoral pH can improve the efficacy of anti-VEGF treatments.
منابع مشابه
Quinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملSignal transduction via vascular endothelial growth factor (VEGF) receptors and their roles in atherogenesis.
Vascular endothelial growth factor (VEGF)-A plays a critical role in vascular development and angiogenesis through its binding and activation of VEGF receptor-2 (VEGFR-2). The binding of VEGF-A to VEGFR-2 causes receptor dimerization, kinase activation and autophosphorylation of specific tyrosine residues within the dimeric complex. Tyrosine(Y)951 in the kinase-insert domain, Y1054 and Y1059 in...
متن کاملGanglioside GM3 inhibits VEGF/VEGFR-2-mediated angiogenesis: direct interaction of GM3 with VEGFR-2.
Angiogenesis is associated with growth, invasion, and metastasis of human solid tumors. Aberrant activation of endothelial cells and induction of microvascular permeability by a vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) signaling pathway is observed in pathological angiogenesis including tumor, wound healing, arthritis, psoriasis, diabetic retinopathy, and others. Here, we ...
متن کاملBroussonetia kazinoki modulates the expression of VEGFR-2 and MMP-2 through the inhibition of ERK, Akt
Broussonetia kazinoki (BK) has been used as a traditional medicine to improve vision, as well as for inflammatory and infectious diseases. In the present study, we investigated the effects and molecular mechanism of the ethanolic extract of BK on cell proliferation, migration and tubular formation in vascular endothelial growth factor-A (VEGF-A)treated human umbilical vein endothelial cells. BK...
متن کاملUncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis.
Systemic sclerosis (SSc) skin lesions are characterized by disturbed vessel morphology with enlarged capillaries and an overall reduction in capillary density, suggesting a deregulated, insufficient angiogenic response. It has been postulated that this phenomenon is due to reduced expression of the potent angiogenic factor vascular endothelial growth factor (VEGF). In contrast to this hypothesi...
متن کامل